

Documentation

Introduction

	Automated Security Benchmark - Auditing and Remediation

Getting Started

	Audit
	Overview

	Considerations

	Currently Enabled Playbooks

	Setup auditing as standalone

	Running the Audit Only as part of remediate playbook

	Defining the audit

	Running on Linux

	Running on Windows

	Remediate
	Requirements

	Installation

	How to Use

	Using Audit and Remediate together

Available Content

	Release Schedule
	Vendor Benchmark Schedule

	CIS Benchmarks
	Operating Systems

	Cloud Platforms

	Applications

	Archived Roles

	CIS Specific Information
	Advanced Options

	STIG Benchmarks
	Operating Systems

	Networking

	Applications

	Archived Roles

Development

	Contributing
	How to contribute to audit development

	How to Contribute to Remediate Development

Support

	Getting Support
	Contact Us

	MindPoint Group Official Site and Services

Reference & Appendices

	Glossary

	Useful links
	Main Content site

	Audit

	Remediate

Automated Security Benchmark - Auditing and Remediation

[image: _images/ansible-lockdown.svg]
 [https://github.com/ansible-lockdown][image: _images/ansible-lockdown1.svg]
 [https://github.com/ansible-lockdown][image: _images/925818806838919229.svg]
 [https://www.lockdownenterprise.com/discord]
MindPoint Group’s (MPG [https://www.mindpointgroup.com/cybersecurity-products/ansible-counselor]) Ansible-Lockdown Overview

Our ReadtheDocs elaborates the resources, significance and objective of using our Automated Security
Benchmark for auditing and remediation of system security. Our MPG [https://www.mindpointgroup.com/cybersecurity-products/ansible-counselor] Ansible [https://www.ansible.com/] roles can be applied
to systems to improve security posture, meet compliance requirements, and deploy without disruption
after due diligence. Security hardening is achieved through the use of industry-recognized benchmarks
CIS [https://www.cisecurity.org/cis-benchmarks/] and DISA [https://disa.mil/] STIG [https://public.cyber.mil/stigs/downloads/], which provide open-source licensed configurations to bring systems
into security compliance. The content delivered consists of an audit component based on GOSS [https://goss.rocks]
that scans a host for compliance and a remediate component that can be run centrally using an
Ansible Deployment Server to bring host(s) into compliance. Our open-source development/release process
composes of MPG [https://www.mindpointgroup.com/cybersecurity-products/ansible-counselor]’s Ansible-Lockdown GitHub [https://github.com/ansible-lockdown] main/devel branches and ansible-galaxy [https://galaxy.ansible.com/MindPointGroup] updates that aligned
with new benchmark versions.

Why should this role be applied to a system?

There are three main reasons to apply this role to systems:

	1. Improve security posture

The configurations from the adopted benchmark add security and rigor around multiple
components of an operating system, including user authentication, service
configurations, and package management. All of these configurations add up
to an environment that is more difficult for an attacker to penetrate and use
for lateral movement.

	2. Meet compliance requirements

Some deployers may be subject to industry compliance programs, such as
PCI-DSS, HIPAA, ISO 27001/27002, or NIST 800-53. Many of these programs require
hardening standards to be applied to systems.

	3. Deployment without disruption

Security is often at odds with usability. The role provides the greatest
security benefit without disrupting production systems. Deployers have the
option to opt out or opt in for most configurations depending on how their
environments are configured.

What is security hardening?

Based upon industry recognized benchmarks and best practices,
using leading products to enable highly adjustable configurations
to bring your systems/platforms into security compliance.

	Open-Source (MIT licensed)

	Community supported as standard

	Enterprise support available

	Configuration-as-code

	Assist in bringing your systems/platform into compliance through the use of Ansible [https://www.ansible.com/]

	Audit your current system/platform using GOSS [https://goss.rocks]

	Highly configurable to work with your systems

The content delivered is based upon either one of the two major contributors to the security best practices in the IT industry.

	Center for Internet Security (CIS [https://www.cisecurity.org/cis-benchmarks/]):

	A global IT community of experts helping to build, document sets of benchmarks to produce industry best security practices.

	CIS Benchmarks are vendor agnostic, consensus-based security configuration guides both developed and accepted by government, business, industry, and academia.

or

	Security Technical Implementation Guide (STIG [https://public.cyber.mil/stigs/downloads/]):

	From the Defense Information Systems Agency (DISA [https://disa.mil/])

	The STIG is released with a public domain license and it is commonly used to secure systems at public and private organizations around the world.

Note

Both CIS [https://www.cisecurity.org/cis-benchmarks/] and STIG [https://public.cyber.mil/stigs/downloads/] are well-known and respected benchmarks created for the industry to assist in achieving recognized compliance (e.g. PCI DSS, HIPAA, SOC2, NIST) and adopting security best practices.

Benchmark Overview

	CIS Overview
	What is CIS?

	What do the CIS roles do?

	Control Severities

	STIG Overview
	What is STIG?

	What do the STIG roles do?

	Control Severities

What is provided?

The content provided is open-source licensed configurations to assist in
achieving or auditing compliance to one of the benchmark providers listed above.

This consists of two components:

	Audit

	Runs a small single binary on the system written in GO called GOSS [https://goss.rocks].

	Enables you to very quickly scan your host and output the status of compliance for your host.

	Remediate

	Has the ability to run from a central location using the configuration management tool ansible.

	Can assist with bringing your host into compliance for the relevant benchmark.

Both can be run alone or in conjunction with each other.

[image: Simple Process Workflow]

How is this written?

We analyze each configuration control from the applicable benchmark to determine what impact it has on a live production environment and how to
best implement a way to audit the current configuration and how to achieve those requirements using Ansible.
Tasks are added to the role that configure a host to meet the configuration requirements. Each task is documented to explain what was changed,
why it was changed, and what deployers need to understand about the change.

Deployers have the option to enable/disable every control that does not suit their environments needs.
Every control item has an associated variable that can be used to switch it on or off.

Additionally, the items that have configurable values, i.e. number of password attempts, will generally have a corresponding variable that allows for
customization of the applied value.
It is imperative for each deployer to understand the regulations and compliance requirements that their organization and specific
environments are responsible for meeting in order to effectively implement the controls in the relevant benchmark.

Development Process

Lifecycle of releases and branches

While Remediate and Audit are individually managed processes, nevertheless, some of the content is linked.
There are occasions where both need updating or just one of them.

As a rule, our goal is to abide to the following lifecycle process for branches and releases that include ansible-galaxy [https://galaxy.ansible.com/MindPointGroup] sync updates.
Being community, we have direct customer requests and requirements that take priority in releases.

Branches

	devel branch

	Staging area for bug fixes, PRs and new benchmarks.

	Default and working development branch.

	We aim to get majority of PRs merged to devel between 2-4 weeks.

	Community Collaboration PR (Pull Request) Branch.

	main branch (The release branch)

	We merge from devel to main branch.

	main branch is dependent on the severity and impact of issues closed.

	Routinely, a release alignment is every 8-12 weeks (sometimes much quicker).

	Once a new CIS [https://www.cisecurity.org/cis-benchmarks/]/STIG [https://public.cyber.mil/stigs/downloads/] benchmark gets released, we aim to merge the new tagged release (2-4 weeks).

	The major releases are sourced and linked to ansible-galaxy [https://galaxy.ansible.com/MindPointGroup] Roles.

Demos

[image: Ansible Lockdown - RHEL 9 CIS Baseline Demo]
 [https://www.youtube.com/watch?v=sbIfaNsoszM][image: Ansible Lockdown - M. Bolwell Audit and Compliance Benchmarks Demo/Q and A]
 [https://www.youtube.com/watch?v=5OdT3k2IDVo]

CIS Overview

What is CIS?

Center for Internet Security

CIS is home to the Multi-State Information Sharing and Analysis Center® (MS-ISAC®),
the trusted resource for cyber threat prevention, protection, response, and recovery
for U.S. State, Local, Tribal, and Territorial government entities,
and the Elections Infrastructure Information Sharing and Analysis Center® (EI-ISAC®),
which supports the rapidly changing cybersecurity needs of U.S. elections offices.

What do the CIS roles do?

The roles follow the CIS provided guide (benchmark) released for the OS/platform/application.
Each guide is different, some have in excess of 200 controls and apply to various parts of an
OS/platform/application. Each guide is updated regularly by CIS.

Note

CIS is often used if there is absence for an appropriate released STIG version.

Control Severities

Controls are divided into groups based on the following properties:

	Level 1
The majority of control are based at this level.
These controls have are considered to have a low impact to a system.
By implementing these controls is considered low to medium risk of disruption.

	Level 2
These controls are considered high risk with a chance of system disruption if implemented.

Note

Along with severities it also shows the severity for servers vs workstations. You can have a control that is more
severe for servers than workstations or vice-versa. We tag each task with the full level, level1-server/level1-workstation

Note

All of the default configurations are found within is_container.yml and this is where they should be adjusted. Do not adjust within the tasks themselves
- remediation - defaults/main.yml
- audit

	standalone vars/CIS.yml

	combined vars/[system_hostname].yml

STIG Overview

What is STIG?

Sometimes referred to as DISA STIG.
DISA STIG refers to an organization (DISA — Defense Information Systems Agency) that provides technical guides (STIG — Security Technical Implementation Guide).

What do the STIG roles do?

This role follows the Security Technical Implementation Guide (STIG) released for the OS/Platform/application.
Each guide is different, some have in excess of 200 controls and apply to various part of an OS but each guide is
updated regularly by (DISA).

Note

DISA is part of the United States Department of Defense.

Control Severities

Controls are divided into groups based on the following properties:

	High (CAT I)
These controls have a large impact on the security of a
system. They also have the largest operational impact to a system and
deployers should test them thoroughly in non-production environments.

	Medium (CAT II)
These controls are the bulk of the items in the STIG and
they have a moderate level of impact on the security of a system.
Many controls in this category will have an operational impact on
a system and should be tested thoroughly before implementation.

	Low (CAT III)
These controls have a smaller impact on overall security, but they
are generally easier to implement with a much lower operational impact.

Note

All of the default configurations are found within
- remediation - defaults/main.yml
- audit

	standalone vars/STIG.yml

	combined vars/[system_hostname].yml

Audit

	Overview

	Considerations

	Currently Enabled Playbooks

	Setup auditing as standalone

	Running the Audit Only as part of remediate playbook

	Defining the audit

	Running on Linux

	Running on Windows

Overview

Ansible remediation for security benchmarks now utilizes an open-source
go binary called goss [https://goss.rocks] to audit the system.

Ensuring consistency in checks by using the same settings and controls
that have been enabled in the remediation steps, are the same ones
checked by the audit.

Considerations

	The audit runs using the host only compute resources (memory/cpu).

	Please be aware this may have adverse effect running on a heavily utilized system.

	Please consider shared resources when running on many hosts simultaneously.

It can be run in two ways:

	Enabled to run as part of the ansible playbook and is setup to capture pre remediation and post remediation states.
Using the same configured variables as used in remediation See Using Audit and Remediate at the same time

	Standalone script

	run_audit.sh (Linux (shell))

	run_audit.ps1 (Windows(powershell))

Currently Enabled Playbooks

	CIS Benchmarks

	STIG Benchmarks

Setup auditing as standalone

It is presumed that you have the script downloaded and the audit content ready from
source control or your own configured location.

The following requirements are needed (OS dependant)

	Super user or permissions to run privilege commands

	Linux sudo can work

	Windows ability to run security audits and query group or local policy.

	goss binary appropriate for the OS

	The binary must be accessible by the OS so the scripts can run smoothly with appropriate rights.

	The expected path for the binary is found inside the relevant OS script and can be adjusted as required.

	Linux

	Binary [https://github.com/aelsabbahy/goss/releases/download/v0.3.16/goss-linux-amd64]

	Checksum [https://github.com/aelsabbahy/goss/releases/download/v0.3.16/goss-linux-amd64.sha256]

	Windows

	Binary [https://github.com/aelsabbahy/goss/releases/download/v0.3.16/goss-alpha-windows-amd64.exe]

	Checksum [https://github.com/aelsabbahy/goss/releases/download/v0.3.16/goss-alpha-windows-amd64.exe.sha265]

Note

The binary only needs to be accessible to the host with ability to use.
The relevant script needs to be adjust to point to the path of the binary.

Running the Audit Only as part of remediate playbook

It is possible to just run the audit on some playbooks (being rolled out across them all). This is a variable set

audit_only: true

This will run the audit based on the same release as the playbook and will then stop.
Extra variables also enable the ability to copy back the audit output to the control node and create a directory structure.

As part of audit_only
This will enable files to be copied back to control node
fetch_audit_files: false
Path to copy the files to will create dir structure
audit_capture_files_dir: /some/location to copy to on control node

Defining the audit

Each script runs against a configures variables file found in the content location in

{downloaded content}/vars/{benchmark}.yml

These are the variables that configure which controls are run along with some configurable settings during an audit.

Each script has the ability for you to set several variables depending on your environment requirements.
e.g. locations on where to find binary or output locations

There are also switch options to allow you to run a couple of these benchmarks at one time.

Script runtime options

	The group option allows a meta field that can be assigned against the report for use in the analysis if servers are under the same group.

If more than one server group is analyzed, groups can be separated with commas.

	The full audit report has the saved output filename and location information.

Running on Linux

	Script

	run_audit.sh (found in content directory)

Understanding variables:

	Uppercase variable are the only ones that should need changing

	lowercase variables are the ones that are discovered or built from existing.

script variables
example:

AUDIT_BIN="${AUDIT_BIN:-/usr/local/bin/goss}" # location of the goss executable
AUDIT_FILE="${AUDIT_FILE:-goss.yml}" # the default goss file used by the audit provided by the audit configuration
AUDIT_CONTENT_LOCATION="${AUDIT_CONTENT_LOCATION:-/var/tmp}" # Location of the audit configuration file as available to the OS

script help

Script to run the goss audit

Syntax: ./run_audit.sh [-f|-g|-o|-v|-w|-h]
options:
-f optional - change the format output (default value = json)
-g optional - Add a group that the server should be grouped with (default value = ungrouped)
-o optional - file to output audit data
-v optional - relative path to the vars file to load (default e.g. /var/tmp/RHEL7-CIS/vars/CIS.yml)
-w optional - Sets the system_type to workstation (Default - Server)
-h Print this Help.

Other options can be assigned in the script itself

Running on Windows

	Script

	run_audit.ps1 (found in content directory)

Variables can be set within the script

Variables for Audit

$DEFAULT_CONTENT_DIR = "C:\remediation_audit_logs" # This can be changed using cli
$DEFAULT_AUDIT_BIN = "$DEFAULT_CONTENT_DIR\goss.exe" # This can be changed using cli option

script help

NAME
 C:\remediation_audit_logs\Windows-2019-CIS-Audit\run_audit.ps1

SYNOPSIS
 Wrapper script to run an audit

SYNTAX
 C:\remediation_audit_logs\Windows-2016-CIS-Audit\run_audit.ps1 [[-auditbin] <String>] [[-auditdir] <String>]
 [[-varsfile] <String>] [[-group] <String>] [[-outfile] <String>] [<CommonParameters>]

DESCRIPTION
 Wrapper script to run an audit on the system using goss.
 This allows for bespoke variables to be set

PARAMETERS
 -auditbin <String>

 -auditdir <String>
 default: $DEFAULT_CONTENT_DIR
 Ability to change the location of where the content can be found
 This is where the audit content is stored
 e.g. c:/windows_audit

 -varsfile <String>
 default: $DEFAULT_VARS_FILE
 Ability to set a variable file defined with the settings to match your requirements

 -group <String>
 default: none
 Ability to set a group that the system belongs to
 Can be used when matching similar system in that same group

 -outfile <String>
 default: $AUDIT_CONTENT_DIR\audit_$host_os_hostname_$host_epoch.json
 Ability to set an outfile to send the full audit output to
 Requires path to be set.
 e.g. c:/windows_audit_reports

 <CommonParameters>
 This cmdlet supports the common parameters: Verbose, Debug,
 ErrorAction, ErrorVariable, WarningAction, WarningVariable,
 OutBuffer, PipelineVariable, and OutVariable. For more information, see
 about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

 -------------------------- EXAMPLE 1 --------------------------

 PS C:\>./run_audit.ps1

 ./run_audit.ps1 -auditbin c:\path_to\binary.name
 ./run_audit.ps1 -auditdir c:\somepath_for_audit_content
 ./run_audit.ps1 -varsfile myvars.yml
 ./run_audit.ps1 -outfile path\to\audit\output.json
 ./run_audit.ps1 -group webserver

Remediate

This role is part of the Ansible Lockdown [https://github.com/ansible-lockdown] project and can be used as a
standalone role or it can be used along with other Ansible roles, playbooks, or collections.

	Requirements

	Installation

	Using ansible-galaxy

	Using git

	How to Use

	On It’s Own

	With Existing Playbooks

	Variables and the Role

	Using and Modifying Variables Directly (defaults/main.yml)

	Modifying Variables with Extra-Vars

	Using Tags

Warning

It is strongly recommended to run the role in a test environment first. There are controls that could introduce
breaking changes. Check mode might not always catch these changes. The best way to confirm how the role will change
your system is to fully test.

Requirements

This documentation assumes that the reader has completed the steps within the

	Ansible installation guide [https://docs.ansible.com/ansible/latest/installation_guide/index.html].

and has a good understanding of using ansible

	Ansible User Guide [https://docs.ansible.com/ansible/latest/user_guide/index.html].

Note

The role requires elevated privileges and must be run as a user with sudo
access. The example above uses the become option, which causes Ansible to use
sudo before running tasks.

Installation

The recommended installation methods for this role are
ansible-galaxy (recommended) or git.

Using ansible-galaxy

The easiest installation method is to use the ansible-galaxy command that
is provided with your Ansible installation:

The general format is ansible-galaxy install git+|url to repo|, below is an example with
RHEL8-CIS

ansible-galaxy install git+https://github.com/ansible-lockdown/RHEL8-CIS.git

The ansible-galaxy command will install the role into
/etc/ansible/roles/ and this makes it easy to use with
Ansible playbooks.

Using git

Start by cloning the role into a directory of your choice, this example uses ~/.ansible/roles which can be changed out for any folder.
That folder needs to be empty:

To clone and create a folder with the same name as the repo:

cd ~/CIS_Roles
git clone https://github.com/ansible-lockdown/RHEL8-CIS.git

To clone and put the files from the repo into a specific folder, folder does need to be empty:

mkdir ~/CIS_Roles
git clone https://github.com/ansible-lockdown/RHEL8-CIS.git ~/CIS_Roles

Ansible looks for roles in ~/.ansible/roles by default.

If the role is cloned into a different directory, that directory must be
provided with the roles_path option in ansible.cfg. The following is
an example of a ansible.cfg file that uses a custom path for roles:

[DEFAULTS]
roles_path = /etc/ansible/roles:/home/myuser/custom/roles

With this configuration, Ansible looks for roles in /etc/ansible/roles and
~/custom/roles.

How to Use

On It’s Own

This role can be used on it’s own as a role. The file site.yml is the included file to point to. This role does not include an inventory file for hosts
since that is too site specific, that will need to be managed locally. Below are examples of how to run in various scenarios

CLI - Notice the reference to site.yml

cd roles
ansible-playbook -i hosts -e '{ "rhel8stig_cat2_patch":false,"rhel8stig_cat3_patch":false }' ./RHEL8-STIG/site.yml'

Tower Steps

With Existing Playbooks

This role works well with existing playbooks. The following is an
example of a basic playbook that uses this role:

- hosts: servers
 become: yes
 roles:
 - role: RHEL8-CIS
 when:
 - ansible_os_family == 'RedHat'
 - ansible_distribution_major_version | version_compare('8', '=')

Variables and the Role

The role is fully customizable by setting the variables provided in the defaults/main.yml file. These variables range in usage from toggling entire sections (CIS), categories (STIG), general groups (GUI related), individual controls, localized settings, etc.
There are comments around these variables that have a description of what the variable does, what the value options are, and what controls are associated with the variable.
Variables are also listed in order of appearance in the execution of the role, variables used early in the are listed earlier in the file. Variables in this location are also very low in precedence,
here is the official list of variable precedence. [https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence]
This means they are over-written very easily via extra vars

This role has been written with ease of use in mind, which means it’s written in a way that requires as little user interaction as possible. No need to modify any tasks at all!

Using and Modifying Variables Directly (defaults/main.yml)

This is the most basic way to make the change. The file has all of the available variables along with comments on what task the variable is for, a description on what the variable is, and
the formatting for the value in the variable. Just update the values as needed

Modifying Variables with Extra-Vars

This is where the power of using variables via defaults/main.yml come into play. Anywhere you can use or set an extra var is place you can set these variables.

CLI In-Line setting (Set to only run STIG CAT1)

ansible-playbook -i host_file -e '{ "rhel8stig_cat2_patch":false,"rhel8stig_cat3_patch":false }' ./RHEL8-STIG/site.yml

Using Tags

Each control is tagged with various pieces of information about the control to allow for more refined use with skipping or running controls.
For STIG this includes all of the ID’s, CIS has the level2 data, and both have info related to what the control relates to. For example all controls related to SSH will have the ssh tag.

STIG Example:

tags:
 - RHEL-08-040137
 - CAT2
 - CCI-001764
 - SRG-OS-000368-GPOS-00154
 - SV-244546r809339_rule
 - V-244546
 - fapolicy

CIS Example:

tags:
 - level1-server
 - level1-workstation
 - automated
 - patch
 - dhcp
 - rule_2.2.5

Using Audit and Remediate together

Using both Audit and Remediate in a workflow

This is missing the copy remediate settings step

[image: Process Workflow Audit and Remediate]

Release Schedule

Vendor Benchmark Schedule

CIS

CIS (Center for Internet Security) releases developed security configurations and best practices that the community validates.
There is no official schedule, although CIS tends to release new or updated benchmarks in a draft format, which individuals can subscribe to prior to an official release.

STIG

STIG (Security Technical Implementation Guide) releases are developed by vendors in conjunction with requirements from DISA.
STIG release schedule is managed and released on a quarterly schedule.

Playbook Releases

We aim to release remediate benchmarks within 30 days of vendor release to subscribers, this is subject to the number of changes, with new benchmarks often taking significantly longer.
Public releases will be approximately three months after subscriber release.

Example

Example Release Schedule for updated benchmarks

	Benchmark

	Vendor Release

	Subscriber release

	Public Release

	RHEL8-STIG

	27th January

	27th February

	27th May

Becoming a subscriber is simple, visit https://lockdownenterprise.com for more information.

CIS Benchmarks

Operating Systems

CIS Linux Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	AMAZON2-CIS [https://github.com/ansible-lockdown/AMAZON2-CIS]

	True

	True

	True

	[image: ../_images/AMAZON2-CIS.svg]

	AMAZON2023-CIS [https://github.com/ansible-lockdown/AMAZON2023-CIS]

	True

	True

	True

	[image: ../_images/AMAZON2023-CIS.svg]

	DEBIAN11-CIS [https://github.com/ansible-lockdown/DEBIAN11-CIS]

	True

	True

	WIP

	N/A

	RHEL7-CIS [https://github.com/ansible-lockdown/RHEL7-CIS]

	True

	True

	True

	[image: ../_images/RHEL7-CIS.svg]

	RHEL8-CIS [https://github.com/ansible-lockdown/RHEL8-CIS]

	True

	True

	True

	[image: ../_images/RHEL8-CIS.svg]

	RHEL9-CIS [https://github.com/ansible-lockdown/RHEL9-CIS]

	True

	True

	True

	[image: ../_images/RHEL9-CIS.svg]

	UBUNTU18-CIS [https://github.com/ansible-lockdown/UBUNTU18-CIS]

	True

	True

	True

	[image: ../_images/UBUNTU18-CIS.svg]

	UBUNTU20-CIS [https://github.com/ansible-lockdown/UBUNTU20-CIS]

	True

	True

	True

	[image: ../_images/UBUNTU20-CIS.svg]

	UBUNTU22-CIS [https://github.com/ansible-lockdown/UBUNTU22-CIS]

	True

	True

	True

	[image: ../_images/UBUNTU22-CIS.svg]

CIS Windows Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	Windows-10-CIS [https://github.com/ansible-lockdown/Windows-10-CIS]

	True

	True

	WIP

	N/A

	Windows-11-CIS [https://github.com/ansible-lockdown/Windows-11-CIS]

	True

	True

	WIP

	N/A

	Windows-2016-CIS [https://github.com/ansible-lockdown/Windows-2016-CIS]

	True

	True

	True

	[image: ../_images/Windows-2016-CIS.svg]

	Windows-2019-CIS [https://github.com/ansible-lockdown/Windows-2019-CIS]

	True

	True

	True

	[image: ../_images/Windows-2019-CIS.svg]

	Windows-2022-CIS [https://github.com/ansible-lockdown/Windows-2022-CIS]

	True

	True

	WIP

	[image: ../_images/Windows-2022-CIS.svg]

Cloud Platforms

CIS Platform Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	AWS-Foundations [https://github.com/ansible-lockdown/AWS-FOUNDATIONS-CIS]

	True

	True

	False

	[image: ../_images/AWS-FOUNDATIONS-CIS.svg]

	Azure-CIS [https://github.com/ansible-lockdown/AZURE-CIS]

	True

	True

	False

	[image: ../_images/AZURE-CIS.svg]

Applications

CIS Application Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	Apache-2.4-CIS [https://github.com/ansible-lockdown/APACHE-2.4-CIS]

	True

	True

	False

	[image: ../_images/APACHE-2.4-CIS]

	Postgres-12-CIS [https://github.com/ansible-lockdown/POSTGRES-12-CIS]

	True

	True

	False

	[image: ../_images/POSTGRES-12-CIS.svg]

	Kubernetes1.6.1-CIS [https://github.com/ansible-lockdown/Kubernetes1.6.1-CIS]

	True

	True

	False

	[image: ../_images/Kubernetes1.6.1-CIS]

	NGINX-CIS [https://github.com/ansible-lockdown/NGINX-CIS]

	True

	WIP

	WIP

	N/A

Archived Roles

None currently

CIS Specific Information

Advanced Options

Note

These are advanced options and required a greater understanding of all aspects of implementation.

	auditd_exclusion:

auditd logs can fill up very quickly with the default CIS options to log every privileged commands.
Whether scanners/automation or and job that needs to run against a system with privilege access. e.g.sudo

There is the ability to change this for specific users to exclude anything in user space.
This will still capture login/logout and sshd process but anything else will be excluded for that user.
This can be enabled with the following (this needs to be set in an alternate variable location):

allow_auditd_uid_user_exclusions: true

Then a list of applicable users can be added to the exclusions.
e.g.

rhel8cis_auditd_uid_exclude:
- ansible
- vagrant

STIG Benchmarks

Operating Systems

STIG Windows Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	Windows-10-STIG [https://github.com/ansible-lockdown/Windows-10-STIG]

	True

	True

	False

	[image: ../_images/Windows-10-STIG.svg]

	Windows-2016-STIG [https://github.com/ansible-lockdown/Windows-2016-STIG]

	True

	True

	False

	[image: ../_images/Windows-2016-STIG.svg]

	Windows-2019-STIG [https://github.com/ansible-lockdown/Windows-2019-STIG]

	True

	True

	False

	[image: ../_images/Windows-2019-STIG.svg]

	Windows-2022-STIG [https://github.com/ansible-lockdown/Windows-2022-STIG]

	True

	WIP

	WIP

	N/A

Networking

STIG Hardware Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	Cisco-IOS-L2S [https://github.com/ansible-lockdown/CISCO-IOS-L2S-STIG]

	True

	True

	False

	[image: ../_images/CISCO-IOS-L2S-STIG.svg]

Applications

STIG Application Benchmark Availability

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	Apache-2.4-STIG [https://github.com/ansible-lockdown/APACHE-2.4-STIG]

	True

	True

	False

	[image: ../_images/APACHE-2.4-STIG]

	TOMCAT-9-STIG [https://github.com/ansible-lockdown/TOMCAT-9-STIG]

	True

	True

	False

	[image: ../_images/TOMCAT-9-STIG.svg]

	Windows_Advance_Firewall-STIG [https://github.com/ansible-lockdown/WinFWADV-STIG]

	True

	True

	True

	[image: ../_images/WinFWADV-STIG.svg]

	KUBERNETES-STIG [https://github.com/ansible-lockdown/KUBERNETES-STIG]

	True

	True

	False

	[image: ../_images/KUBERNETES-STIG.svg]

Archived Roles

STIG Retired Benchmark

	Benchmark

	Maintained

	Remediate

	Audit

	Release

	RHEL5-STIG [https://github.com/ansible-lockdown/RHEL5-STIG]

	False

	False

	False

	N/A

	RHEL6-STIG [https://github.com/ansible-lockdown/RHEL6-STIG]

	False

	False

	False

	N/A

	Windows-2008R2-Member-Server-STIG [https://github.com/ansible-lockdown/Windows-2008R2-Member-Server-STIG]

	False

	False

	False

	N/A

	Windows-2012-Member-Server-STIG [https://github.com/ansible-lockdown/Windows-2012-Member-Server-STIG]

	False

	False

	False

	N/A

	Windows-2012-Domain-Controller-STIG [https://github.com/ansible-lockdown/Windows-2012-Domain-Controller-STIG]

	False

	False

	False

	N/A

	Postgres-9-STIG [https://github.com/ansible-lockdown/POSTGRES-9-STIG]

	True

	True

	False

	N/A

Contributing

Commonly with GitHub open-source repositories and projects,
community contributions are via GitHub Issues and Pull Requests.

We do ask the following:

	Respect the community’s time and effort that gets put into feedback and support.

	Provide as much information as possible with issues or pull request.

	Pull Requests:

	signed-off-by (user is provided)

	signed-by (gpg key signed)

	How to contribute to audit development
	Adding code

	Considerations

	Layout
	Content

	Metadata

	Gotchas

	How to Contribute to Remediate Development
	Remediate Code Summary

	Remediate Code Considerations

	Remediate Code Layout
	General Layout

	STIG Control Task Layout

	CIS Control Task Layout

How to contribute to audit development

Adding code

We strive to maintain a set of standards we would like to achieve for all code written.

Considerations

	Keep it as simple as possible to aid investigation and debug.

	Ensure it aligns with the remediate portion (the remediate and audit repos are intrinsically linked when combined).

Layout

	Each control should be in its own file.

	Use variables wherever possible.

	Some controls were associated; possibly grouped.

	Multiple stages test (config and running tests)

	Similar tests (filesystem mount options)

	Structure should be where appropriate

|- control group e.g. section_1
|-- grouped controls
|---- control test

e.g.

|- section_1
|-- cis_1.1
|--- cis_1.1.x.yml

Content

	Each task requires the following to be included:

	Title

	At least one control variable (whether control ID is to be run or not).

	If only one test add the variable prior to to the goss_module itself

	Use appropriate goss_modules before using command

	There are circumstances when command allows discovery/filters results

For a full list of goss and how to use the goss_modules (tests).
Goss Docs [https://github.com/aelsabbahy/goss/blob/master/docs/manual.md]

Example

Basic test

{{ if .Vars.rhel9cis_level_1 }}
 {{ if .Vars.rhelcis9_1_1_10 }}
command:
 usb-storage:
 title: 1.1.10 | Disable USB Storage
 exit-status: 0
 exec: "modprobe -n -v usb-storage | grep -E '(usb-storage|install)'"
 stdout:
 - install /bin/true
 meta:
 server: 1
 workstation: 2
 CIS_ID: 1.1.10
 CISv8:
 - 10.3
 CISv8_IG1: true
 CISv8_IG2: true
 CISv8_IG3: true
 {{ end }}
{{ end }}

Breakdown

{{ if .Vars.rhel9cis_level_1 }} ## if rhel9cis_level_1 is true
 {{ if .Vars.rhelcis9_1_1_10 }} ## if rhelcis9_1_1_10 is true
command: ## goss_module
 usb-storage: ## unique name associated with the command
 title: 1.1.10 | Disable USB Storage ## title {{ control id }}| {{ control title }}
 exit-status: 0 ## Options for goss_module
 exec: "modprobe -n -v usb-storage | grep -E '(usb-storage|install)'" ## Options for goss_module
 stdout: ## Options for goss_module
 - install /bin/true ## Options for goss_module
 meta: ## Meta data used for reporting (see metadata)
 server: 1
 workstation: 2
 CIS_ID: 1.1.10
 CISv8:
 - 10.3
 CISv8_IG1: true
 CISv8_IG2: true
 CISv8_IG3: true
 {{ end }} ## Close if statement
{{ end }} ## Close if statement

Variable precedence

Variables should be added higher in the test based on the level of impact.

Metadata

This is added to the audit benchmark for reference across compliance requirements.
There are two levels of metadata:

	audit metadata - this is general system information and audit information.

	control metadata - this is added to every audit control and is specific to each control.

Audit Metadata (required)

	These are items set/discovered about the system within the script set via vars in the script.

	Referenced in the goss.yml file.

Contains:

Discovered audit variables

	Variable Title

	Script variable name

	Purpose

	host_machine_uuid:

	{{ .Vars.machine_uuid }}

	discovered UUID of system (used as unique identifier)

	host_epoch:

	{{ .Vars.epoch }}

	epoch time that script initiated (part of output filename)

	host_os_locale:

	{{ .Vars.os_locale }}

	system locale (TZ)

	host_os_release:

	{{ .Vars.os_release }}

	OS version (e.g. 7)

	host_os_distribution:

	{{ .Vars.os_distribution }}

	OS distribution (e.g. rhel)

	host_hostname:

	{{ .Vars.os_hostname }}

	hostname

	host_system_type:

	{{ .Vars.system_type }}

	

	
	Linux

	Server/Workstation Manually set (default server)

	
	Windows

	pulled from regkey and set

Special Variables

	host_automation_group: {{ .Vars.auto_group }}

	Used to group like systems when reporting

	If run via remediate, it uses host group memberships

	If run via script, it is an optional value or null

Control Metadata (required)

	This consists of data found in the benchmark documentation

	This potentially changes with each release update (this will need to be correct for the release being worked on)

CIS Specific

This contains the following:

	server: cis level options: (1|2)

	workstation: cis level: (1|2|NA)

	CIS_ID: control reference

	CISv8: list of associated groups the control is associated with

	CISv8_IG1: Boolean (if meets that association)

meta:
 server: 1
 workstation: 1
 CIS_ID: 1.1.1.1
 CISv8:
 - 4.8
 CISv8_IG1: false
 CISv8_IG2: true
 CISv8_IG3: true

STIG Specific

All can be found in the details of the control itself

	Cat: the category control is associated with either (1|2|3)

	CCI: Common identifier is found in the STIG documentation

	Group_Title: is the associated group that particular control is a part of

	Rule_ID: changes with every iteration of the control details

	STIG_ID: control ID known by STIG

	Vul_ID: vulnerability identifier

meta:
 Cat: 1
 CCI:
 - CCI-001494
 - CCI-001496
 - CCI-002165
 - CCI-002235
 Group_Title: SRG-OS-000257-GPOS-00098
 Rule_ID: SV-204392r646841_rule
 STIG_ID: RHEL-07-010010
 Vul_ID: V-204392

Gotchas

If you have two tasks that refer to the same file or command
(this is currently the unique identifier used in goss),
it will only give you the result of one test (the last one ran).

e.g.

file:
 /etc/selinux/config:
 title: 1.6.1.4 | Ensure the SELinux mode is not disabled | config
 exists: true
 contains:
 - '/^SELINUX(|)=(|)(enforcing|permissive)/'
 - '!/^SELINUX(|)=(|)disabled/'
 meta:
 server: 1
 workstation: 1
 CIS_ID:
 - 1.6.1.4
 CISv8:
 - 3.3
 CISv8_IG1: true
 CISv8_IG2: true
 CISv8_IG3: true

and

file:
/etc/selinux/config:
 title: 1.6.1.5 | Ensure the SELinux mode is enforcing | config
 exists: true
 contains:
 - '/^SELINUX(|)=(|)enforcing/'
 - '!/^SELINUX(|)=(|)disabled/'
 meta:
 server: 2
 workstation: 2
 CIS_ID:
 - 1.6.1.5
 CISv8:
 - 3.3
 CISv8_IG1: true
 CISv8_IG2: true
 CISv8_IG3: true

Only one will give you results

How to Contribute to Remediate Development

Remediate Code Summary

We strive to maintain a set of standards and consistency for all code that is written. Please review the formatting of previously written controls
and follow the formatting currently in place. We do have a style guide on writing controls that document standard linting, parameter use/order, tagging, etc.

Remediate Code Considerations

	Keep it as simple as possible
- This is to aid investigation and debugging. Overly complicated tasks/controls are harder to troubleshoot when things go wrong.

	Readability is key
- This means the most clever way to write something might lead to the task being complicated and hard to read.
- For example if you have a multi-axis loop, with vars spread across the role that reference tasks of their own, with jinja filters on top of json filters
to do something in one task instead of having three tasks to accomplish the same thing. (Please create the three tasks for readability)

	Controls only do what the control ask for
- Our Audit tool and Remediate are intrinsically linked when combined. Things like variables and how the search is executed in our Audit rely on the Remediate being correct when run from the Remediate playbook.
- Scanners also use the Fix Text and/or intent of the control (sometimes the Fix Text has mistakes…) to check for compliance. If you deviate from this, scanners find false positives.
- There should be no extra security settings set (even if they are good ideas to set). These roles expect to only set what is defined in the STIG or CIS benchmarks. If other security settings are set, it can cause confusion.

Remediate Code Layout

General Layout

	Each control should be it’s own task. If it needs to be multiple tasks create a block for those tasks, see example in the Layout sections

	Users should not have to edit tasks, but vars in defaults/main.yml. If a control has any variability create a variable for that value

	Follow the structure listed in the Layout sections

	For controls that install/uninstall packages please use package module and use ansible_facts.packages in the when

	The package module will use the default package manager for that system, for example yum (RHEL 7), dnf (RHEL 8+), apt (Ubuntu), etc.

This allows for a more unified use of tasks between all roles
- The use of ansible_facts.packages will skip if it does not need to run and add efficiency to run time

STIG Control Task Layout

	Name - name:
- Each control gets it’s own task and that task needs a name. The name format is category | STIG ID | PATCH or AUDIT | title of control copied from STIG.
- PATCH or AUDIT - This is in reference to the task making a change (PATCH) or not making a change (AUDIT). Tasks that don’t make changes are one that

generally gather information to be used later

	Block
- If there are more than one task to complete a control please keep those in a single task but using a block format.
- When using blocks the steps should have a pipe (|) after the title followed by a description of what that task is doing in the block.

	Module
- This is just the module being used to execute that task, nothing special here

	Parameters
- When using the shell module to gather information please set changed_when and failed_when to false. This will cause the task to always
run and register which always creates the variable registering. The action parts of the task that use that var should handle the var if a fail occurred
during the command or shell function
- Please always use shell over command. The command module is being phased out, but also for consistency please use shell
- When using modules that have alias’s, please do not use the alias since those are often not part of the module documentation
- When using modules that require a path type of parameter please use that first
- When using modules that regex, please use that second after path where applies

	Registers
- Please adhere to the exiting format of registered variable names
- Dynamic variables are variables set in-line of a task, rhel_08_010382_sudoers_all in the example below. Please follow the all lower case using underscores
instead of dashes STIG ID followed by a descriptive name. This helps keep variable names from overlapping in this role or other playbooks/collections you use this role with.

	Variables
- Any value that can deviate from the example used in the STIG fix text. For example tasks that ask to set permissions X or more restrictive that the permissions value should be a variable
- Any value that has multiple value options should be a variable
- These variables should be defined in the defaults/main.yml file
- These variables should be formatted as role name followed by the descriptor, rhel8stig_disruption_high for example

	With_items
- When using loops please use with_items for consistency. We know loop has much of the same functionality as with_items but for consistency we would like with_items since it covers all uses
- Please use loop_control on wordy loops
- Please put the loop list below the with_items like in the example

	When - (Please use when statements on all controls)
- The control should have the when set to run when the var for the individual task toggle set to true. That toggle is the STIG ID, all lower case with underscores instead of dashes
- When you are outside of the block please stack the when values under the when call, see example below for clarification.
- When you are inside of the block you can use use single line for when and value in a single when instance. If there are and/or whens please stack those under the when
- Please do not use empty compares, if you are basing your task run off an empty var please use | length > 0 or | length == 0.

	Tags
- All controls must have tags, but the individual tasks in the block do not get tags. See the example below for clarification
- The tags are in this specific order:

	STIG ID copied from the STIG

	Category

	CCI value (NIST group ID)

	Security Group ID

	Rule ID

	Vulnerability ID

	Descriptor of what the task is involved with. For example ssh, selinux, pamd, gui, etc. This tag is always lowercase

- name: "MEDIUM | RHEL-08-010382 | PATCH | RHEL 8 must restrict privilege elevation to authorized personnel."
 block:
 - name: "MEDIUM | RHEL-08-010382 | AUDIT | RHEL 8 must restrict privilege elevation to authorized personnel. | Get ALL settings"
 ansible.builtin.shell: grep -iws 'ALL' /etc/sudoers /etc/sudoers.d/* | cut -d":" -f1 | uniq | sort
 changed_when: false
 failed_when: false
 register: rhel_08_010382_sudoers_all

 - name: "MEDIUM | RHEL-08-010382 | PATCH | RHEL 8 must restrict privilege elevation to authorized personnel. | Remove format 1"
 ansible.builtin.lineinfile:
 path: "{{ item }}"
 regexp: 'ALL ALL=(ALL) ALL'
 state: absent
 validate: '/usr/sbin/visudo -cf %s'
 with_items:
 - "{{ rhel_08_010382_sudoers_all.stdout_lines }}"
 when: rhel_08_010382_sudoers_all.stdout | length > 0

 - name: "MEDIUM | RHEL-08-010382 | PATCH | RHEL 8 must restrict privilege elevation to authorized personnel. | Remove format 2"
 ansible.builtin.lineinfile:
 path: "{{ item }}"
 regexp: 'ALL ALL=(ALL:ALL) ALL'
 state: absent
 validate: '/usr/sbin/visudo -cf %s'
 with_items:
 - "{{ rhel_08_010382_sudoers_all.stdout_lines }}"
 when: rhel_08_010382_sudoers_all.stdout | length > 0
 when:
 - rhel_08_010382
 - rhel8stig_disruption_high
 tags:
 - RHEL-08-010382
 - CAT2
 - CCI-000366
 - SRG-OS-000480-GPOS-00227
 - SV-237641r646893_rule
 - V-237641
 - sudo

CIS Control Task Layout

	Name - name:
- Each control gets it’s own task and that task gets a name. The name format is Control Number | PATCH or AUDIT | Title copied from CIS control

	Block
- If there is more than one task to complete a control please those in a single task but using a block format, example below.
- When using blocks the steps should have a pipe (|) after the title followed by a description of what that task is doing in the block.

	Module
- This is just the module being used to execute that task, nothing special here

	Parameters
- When using the shell module to gather information please set changed_when and failed_when to false. This will cause the task to
always run and register which always creates the variable registering. The action parts of the task that use that var should handle the var if a
fail occurred during the command or shell function

	Please always use shell over command. The command module is being phased out, but also for consistency please use shell

	When using modules that have alias’s, please do not use the alias since those are often not part of the module documentation

	When using modules that require a path type of parameter please use that first

	When using modules that regex, please use that second after path where applies

	Registers
- Please adhere to the exiting format of registered variable names
- Dynamic variables are variables set in-line of a task, rhel8cis_4_1_1_1_3_grub_cmdline_linux in the example below. Please follow the all lower
case standard using underscores instead of periods/dots with benchmark name followed by the CIS control number and finally a descriptive name.
This helps keep variable names from overlapping in this role or other playbooks/collections you use this role with.

	Variables
- Any value that can deviate from the example used in the STIG fix text. For example tasks that ask to set permissions X or more restrictive that the permissions value should be a variable
- Any value that has multiple value options should be a variable
- These variables should be defined in the defaults/main.yml file
- These variables should be formatted as role name followed by the descriptor, rhel8stig_disruption_high for example

	With_items
- When using loops please use with_items for consistency. We know loop has much of the same functionality as with_items but for consistency we would like with_items

	since it covers all uses
	
	Please use loop_control on wordy loops

	Please put the loop list below the with_items like in the example

	When - (Please use when statements on all controls)
- The control should have the when set to run when the var for the individual task toggle set to true. That toggle is the STIG ID, all lower case with underscores instead of dashes
- When you are outside of the block please stack the when values under the when call, see example below for clarification.
- When you are inside of the block you can use use single line for when and value in a single when instance. If there are and/or whens please stack those under the when
- Please do not use empty compares, if you are basing your task run off an empty var please use | length > 0 or | length == 0.

	Tags
- All controls must have tags, but the individual tasks in the block do not get tags. See the example below for clarification
- The tags are in this specific order:

	Server Level

	Workstation Level

	Automated or Manual. This is from the CIS control in the benchmark documentation and is their assessment of the control being able to be automated or a manual control.

If we automate or don’t automate the control itself we use the value from the benchmark itself here
- Patch or Audit. Does the overall task make any changes or just audit/message out
- Descriptor of what the task is involved with. For example ssh, selinux, pamd, gui, etc. This tag is always lowercase
- Number of the control. The format is rule_< the number>, rule_4.1.1.3 for example

- name: "4.1.1.3 | PATCH | Ensure auditing for processes that start prior to auditd is enabled"
 block:
 - name: "4.1.1.3 | AUDIT | Ensure auditing for processes that start prior to auditd is enabled | Get GRUB_CMDLINE_LINUX"
 ansible.builtin.shell: grep 'GRUB_CMDLINE_LINUX=' /etc/default/grub | sed 's/.$//'
 changed_when: false
 failed_when: false
 check_mode: no
 register: rhel8cis_4_1_1_3_grub_cmdline_linux

 - name: "4.1.1.3 | PATCH | Ensure auditing for processes that start prior to auditd is enabled | Replace existing setting"
 ansible.builtin.replace:
 path: /etc/default/grub
 regexp: 'audit=.'
 replace: 'audit=1'
 notify: grub2cfg
 when: "'audit=' in rhel8cis_4_1_1_3_grub_cmdline_linux.stdout"

 - name: "4.1.1.3 | PATCH | Ensure auditing for processes that start prior to auditd is enabled | Add audit setting if missing"
 ansible.builtin.lineinfile:
 path: /etc/default/grub
 regexp: '^GRUB_CMDLINE_LINUX='
 line: '{{ rhel8cis_4_1_1_3_grub_cmdline_linux.stdout }} audit=1"'
 notify: grub2cfg
 when: "'audit=' not in rhel8cis_4_1_1_3_grub_cmdline_linux.stdout"
 when:
 - rhel8cis_rule_4_1_1_3
 tags:
 - level2-server
 - level2-workstation
 - automated
 - patch
 - auditd
 - grub
 - rule_4.1.1.3

Getting Support

Contact Us

	Discord Community Discussions [https://www.lockdownenterprise.com/discord] : Our Discord channels are direct community communications for all aspects of the Ansible-Lockdown repositories.

	MindPoint Group Official Subscription [https://www.lockdownenterprise.com/] : If your organization requires you to have support, signed releases, or validated testing, those options are available.

	G2 [https://www.g2.com/products/ansible-lockdown/reviews] : Read and Write our reviews at G2

	Twitter@AnsibleLockdown [https://twitter.com/AnsibleLockdown] : Get the latest news from our Twitter feed on everything Ansible Lockdown.

[image: _images/AnsibleLockdown.svg]
 [https://twitter.com/AnsibleLockdown]

MindPoint Group Official Site and Services

	MindPoint Group Official Website [https://www.mindpointgroup.com/company/contact-us] : If your organization has general questions regarding Cybersecurity or our Organization.

	engage@mindpointgroup.com : via Email

	LinkedIn [https://www.linkedin.com/company/mindpoint-group-llc/] : Our official LinkedIn Business Page

	Twitter@MindPointGroup [https://twitter.com/MindPointGroup] : Get the latest news from our Twitter feed on everything MindPointGroup.

[image: _images/MindPointGroup.svg]
 [https://twitter.com/MindPointGroup]

	Known Issues
	Audit

	Remediate

	Audit - FAQ
	Why does goss run manually fail?

	Remediate - FAQ
	Missing “jmespath” Fatal Error

	Missing Sudo Password (Linux OS Based)

Known Issues

Audit

Remediate

Cloud init fails
- Bug 1839899 [https://bugs.launchpad.net/cloud-init/+bug/1839899]

	Affects
	
	RHEL8-CIS - 1.1.3.3

	RHEL8-STIG - RHEL-08-040134

All SELinux related modules are currently broken on RHEL8.6 with epel packages active.
- Bug 2093589 [https://bugzilla.redhat.com/show_bug.cgi?id=2093589]

	Affects
	
	Version-Release number of selected component (if applicable):

	REHL8.6

	Ansible 5.4

	Python 3.8

Multiple missing Python 3.8 libraries to support normal Ansible playbook tasks.
- Bug 2093105 [https://bugzilla.redhat.com/show_bug.cgi?id=2093105]

	Affects
	
	Version-Release number of selected component (if applicable):

	ansible-core-2.12.2-3.1.el8.x86_64

	ansible-5.4.0-2.el8.noarch

	python38-3.8.12

Audit - FAQ

Why does goss run manually fail?

example.

goss -g goss.yml -v

Goss is designed to run from the scripts passing discovered variables into Goss for metadata. Without these values being set, Goss will fail. These metadata variables can bee seen towards the end of the goss.yml file. Futhermore, the run_audit script shows how these variables are created and passed to Goss.

Remediate - FAQ

Missing “jmespath” Fatal Error

fatal: [ansible]: FAILED! => {"msg": "You need to install \"jmespath\" prior to running json_query filter"}

This can occur during a playbook run on certain operating systems when patching takes place as part of the playbook due to the way python is implemented.

	You Need to install jmespath [https://serverfault.com/questions/1114638/ansible-you-need-to-install-jmespath-prior-to-running-json-query-filter-bu] : A great article and explanation written by Discord community member baassssiiee

Missing Sudo Password (Linux OS Based)

Many of the CIS Linux OS based (section 5.x) roles remove the ability for sudoers to use the NOPASSWD option to enable elevated privileges.

The user (unless root) that is running the playbook on the target should have a password set and the playbook run accordingly to pass the become_password.

All repositories should now run a pre-req check to ensure that the user does have a password set and will fail if this is not setup.

Glossary

The following is a list of Glossaries used in the documentation:

	Ansible RedHat Glossary [https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html]

	Ansible RedHat ReadTheDocs [https://docs.ansible.com/ansible/latest/]

	Cyber.Mil Acronyms [https://public.cyber.mil/acronyms/]

Useful links

Main Content site

	Repositories [https://github.com/ansible-lockdown/]

Audit

	Goss Main Site [http://goss.rocks]

	Goss Docs [https://github.com/aelsabbahy/goss/blob/master/docs/manual.md]

Remediate

	Ansible Main Site [https://ansible.com]

	Ansible Get Started [https://www.ansible.com/resources/get-started]

	Ansible Docs [https://docs.ansible.com/ansible/latest/index.html]

Audit Documentation

Audit - FAQ

Why does goss run manually fail?

example.

goss -g goss.yml -v

Goss is designed to run from the scripts passing discovered variables into Goss for metadata. Without these values being set, Goss will fail. These metadata variables can bee seen towards the end of the goss.yml file. Futhermore, the run_audit script shows how these variables are created and passed to Goss.

Remediate Documentation

Remediate

This role is part of the Ansible Lockdown [https://github.com/ansible-lockdown] project and can be used as a
standalone role or it can be used along with other Ansible roles, playbooks, or collections.

Warning

It is strongly recommended to run the role in a test environment first. There are controls that could introduce
breaking changes. Check mode might not always catch these changes. The best way to confirm how the role will change
your system is to fully test.

This documentation assumes that the reader has completed the steps within the

	Ansible installation guide [https://docs.ansible.com/ansible/latest/installation_guide/index.html].

and has a good understanding of using ansible

	Ansible User Guide [https://docs.ansible.com/ansible/latest/user_guide/index.html].

Note

The role requires elevated privileges and must be run as a user with sudo
access. The example above uses the become option, which causes Ansible to use
sudo before running tasks.

The recommended installation methods for this role are
ansible-galaxy (recommended) or git.

The easiest installation method is to use the ansible-galaxy command that
is provided with your Ansible installation:

The general format is ansible-galaxy install git+|url to repo|, below is an example with
RHEL8-CIS

ansible-galaxy install git+https://github.com/ansible-lockdown/RHEL8-CIS.git

The ansible-galaxy command will install the role into
/etc/ansible/roles/ and this makes it easy to use with
Ansible playbooks.

Start by cloning the role into a directory of your choice, this example uses ~/.ansible/roles which can be changed out for any folder.
That folder needs to be empty:

To clone and create a folder with the same name as the repo:

cd ~/CIS_Roles
git clone https://github.com/ansible-lockdown/RHEL8-CIS.git

To clone and put the files from the repo into a specific folder, folder does need to be empty:

mkdir ~/CIS_Roles
git clone https://github.com/ansible-lockdown/RHEL8-CIS.git ~/CIS_Roles

Ansible looks for roles in ~/.ansible/roles by default.

If the role is cloned into a different directory, that directory must be
provided with the roles_path option in ansible.cfg. The following is
an example of a ansible.cfg file that uses a custom path for roles:

[DEFAULTS]
roles_path = /etc/ansible/roles:/home/myuser/custom/roles

With this configuration, Ansible looks for roles in /etc/ansible/roles and
~/custom/roles.

This role can be used on it’s own as a role. The file site.yml is the included file to point to. This role does not include an inventory file for hosts
since that is too site specific, that will need to be managed locally. Below are examples of how to run in various scenarios

CLI - Notice the reference to site.yml

cd roles
ansible-playbook -i hosts -e '{ "rhel8stig_cat2_patch":false,"rhel8stig_cat3_patch":false }' ./RHEL8-STIG/site.yml'

Tower Steps

This role works well with existing playbooks. The following is an
example of a basic playbook that uses this role:

- hosts: servers
 become: yes
 roles:
 - role: RHEL8-CIS
 when:
 - ansible_os_family == 'RedHat'
 - ansible_distribution_major_version | version_compare('8', '=')

The role is fully customizable by setting the variables provided in the defaults/main.yml file. These variables range in usage from toggling entire sections (CIS), categories (STIG), general groups (GUI related), individual controls, localized settings, etc.
There are comments around these variables that have a description of what the variable does, what the value options are, and what controls are associated with the variable.
Variables are also listed in order of appearance in the execution of the role, variables used early in the are listed earlier in the file. Variables in this location are also very low in precedence,
here is the official list of variable precedence. [https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence]
This means they are over-written very easily via extra vars

This role has been written with ease of use in mind, which means it’s written in a way that requires as little user interaction as possible. No need to modify any tasks at all!

This is the most basic way to make the change. The file has all of the available variables along with comments on what task the variable is for, a description on what the variable is, and
the formatting for the value in the variable. Just update the values as needed

This is where the power of using variables via defaults/main.yml come into play. Anywhere you can use or set an extra var is place you can set these variables.

CLI In-Line setting (Set to only run STIG CAT1)

ansible-playbook -i host_file -e '{ "rhel8stig_cat2_patch":false,"rhel8stig_cat3_patch":false }' ./RHEL8-STIG/site.yml

Each control is tagged with various pieces of information about the control to allow for more refined use with skipping or running controls.
For STIG this includes all of the ID’s, CIS has the level2 data, and both have info related to what the control relates to. For example all controls related to SSH will have the ssh tag.

STIG Example:

tags:
 - RHEL-08-040137
 - CAT2
 - CCI-001764
 - SRG-OS-000368-GPOS-00154
 - SV-244546r809339_rule
 - V-244546
 - fapolicy

CIS Example:

tags:
 - level1-server
 - level1-workstation
 - automated
 - patch
 - dhcp
 - rule_2.2.5

Remediate - FAQ

Missing “jmespath” Fatal Error

fatal: [ansible]: FAILED! => {"msg": "You need to install \"jmespath\" prior to running json_query filter"}

This can occur during a playbook run on certain operating systems when patching takes place as part of the playbook due to the way python is implemented.

	You Need to install jmespath [https://serverfault.com/questions/1114638/ansible-you-need-to-install-jmespath-prior-to-running-json-query-filter-bu] : A great article and explanation written by Discord community member baassssiiee

Missing Sudo Password (Linux OS Based)

Many of the CIS Linux OS based (section 5.x) roles remove the ability for sudoers to use the NOPASSWD option to enable elevated privileges.

The user (unless root) that is running the playbook on the target should have a password set and the playbook run accordingly to pass the become_password.

All repositories should now run a pre-req check to ensure that the user does have a password set and will fail if this is not setup.

Combining them both

	Audit
	Overview

	Considerations

	Currently Enabled Playbooks

	Setup auditing as standalone

	Running the Audit Only as part of remediate playbook

	Defining the audit

	Running on Linux

	Running on Windows

	Remediate
	Requirements

	Installation

	How to Use

	Using Audit and Remediate together

LAYOUT

with overline, for parts

* with overline, for chapters

	If under and overline are used, their length must be identical

	The length of the underline must be at least as long as the title itself

Remediate

 _static/minus.png

_static/plus.png

_static/file.png

_static/rem_initiated_audit.png
Remediation Initiated Audit

AUDIT

Config found in remediation settings

GIT

!

Audit setup selected?

Yes

v

setup audit components

if not exist

Download goss binary

Audit content

copy

I

Local

l

install git if not installed ‘

copy from configured location

expect to exist in default location

run_audit selected

Yes

v

END

run audit ‘

_static/rem_initiated_audit2.png
Remediation Intiated Audit AvprT

Config found in remediation settings

Audit setup selected?

setup audit components.

f not exist

Download goss binary.

| |

(et] (et (St e e

Y

run_audit selected

_static/rem_initiated_audit.jpeg
Remediation Intiated Audit AvprT

Config found in remediation settings

Audit setup selected?

Yes

setup audit components.

f not exist

Download goss binary

l |

(s (e (S

T

run_audit selected

N Yes
a0 run audit

_static/simple_workflow.png
Pre-Remediation Remediation Post-Remediation Summary

A 4 \ 4
Audit System Prepare system ‘ Audit System ’ ‘ Show pre and post audit ’

Only change if required

A 4 ¢ \ 4 \ 4

‘ Capture Output ’ ‘ Bring into compliance ‘ Capture Output ‘ ‘ Show changes skipped ’

_static/standalone_audit.png
Stand Alone Audit ’ AUDIT

Settings adjusted in script

run audit script

Extra cli switches added

v

run audit with extended options

Required pre-checks pass

True False

v v

exit and error

run rest of script ’

l

script runs successfully

Tru/ \False
v v

error out with reason

Output summary and location on terminal

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Automated Security Benchmark - Auditing and Remediation

 		
 MindPoint Group’s (MPG) Ansible-Lockdown Overview

 		
 Why should this role be applied to a system?

 		
 What is security hardening?

 		
 CIS Overview

 		
 STIG Overview

 		
 What is provided?

 		
 How is this written?

 		
 Development Process

 		
 Lifecycle of releases and branches

 		
 Branches

 		
 Demos

 		
 Audit

 		
 Overview

 		
 Considerations

 		
 Currently Enabled Playbooks

 		
 Setup auditing as standalone

 		
 Running the Audit Only as part of remediate playbook

 		
 Defining the audit

 		
 Running on Linux

 		
 Running on Windows

 		
 Remediate

 		
 Requirements

 		
 Installation

 		
 Using ansible-galaxy

 		
 Using git

 		
 How to Use

 		
 On It’s Own

 		
 With Existing Playbooks

 		
 Variables and the Role

 		
 Using and Modifying Variables Directly (defaults/main.yml)

 		
 Modifying Variables with Extra-Vars

 		
 Using Tags

 		
 Using Audit and Remediate together

 		
 Release Schedule

 		
 Vendor Benchmark Schedule

 		
 CIS

 		
 STIG

 		
 Playbook Releases

 		
 Example

 		
 CIS Benchmarks

 		
 Operating Systems

 		
 Cloud Platforms

 		
 Applications

 		
 Archived Roles

 		
 CIS Specific Information

 		
 Advanced Options

 		
 STIG Benchmarks

 		
 Operating Systems

 		
 Networking

 		
 Applications

 		
 Archived Roles

 		
 Contributing

 		
 How to contribute to audit development

 		
 Adding code

 		
 Considerations

 		
 Layout

 		
 Gotchas

 		
 How to Contribute to Remediate Development

 		
 Remediate Code Summary

 		
 Remediate Code Considerations

 		
 Remediate Code Layout

 		
 Getting Support

 		
 Contact Us

 		
 MindPoint Group Official Site and Services

 		
 Known Issues

 		
 Audit - FAQ

 		
 Remediate - FAQ

 		
 Glossary

 		
 Useful links

 		
 Main Content site

 		
 Audit

 		
 Remediate

_images/rem_initiated_audit.png
Remediation Initiated Audit

AUDIT

Config found in remediation settings

GIT

!

Audit setup selected?

Yes

v

setup audit components

if not exist

Download goss binary

Audit content

copy

I

Local

l

install git if not installed ‘

copy from configured location

expect to exist in default location

run_audit selected

Yes

v

END

run audit ‘

_images/simple_workflow.png
Pre-Remediation Remediation Post-Remediation Summary

A 4 \ 4
Audit System Prepare system ‘ Audit System ’ ‘ Show pre and post audit ’

Only change if required

A 4 ¢ \ 4 \ 4

‘ Capture Output ’ ‘ Bring into compliance ‘ Capture Output ‘ ‘ Show changes skipped ’

_images/maxresdefault.jpg
lockdown

ENTERPRISE
@:——-n«'

_images/maxresdefault1.jpg
LONDON

INFRASTRUCTURE
AS CODE

gindPoint
GROUP™

@ Ansible Lockdown: Mark Bolwell

AENRLE Automating audit and compliance benchmarks

